Caractérisation et étude structurale du bichromate mixte AgKCr₂O₇

SALAH MNASSER, CLAUDETTE BOIS ET GÉRARD PAPIN

Laboratoire de Chimie Structurale des Matériaux, Bât.F-Université Pierre et Marie Curie, 4, Place Jussieu-75230 Paris Cedex 05, France

Received August 17, 1984; in revised form October 15, 1984

The crystal structure of AgKCr₂O₇ has been determined by single crystal X-ray diffraction. The structure is orthorhombic, space group *Pnam*, with cell constants a = 15.175(7), b = 7.414(4), and c = 6.014(2) Å for Z = 4. The structure was refined to a final *R* of 0.072 for 934 reflections. The configuration of the dichromate ion, pseudo- $C_{2\nu}$, is similar to that found in most other dichromate structures. The potassium ion is surrounded by eight oxygen atoms and the silver ion has a square planar coordination. © 1985 Academic Press, Inc.

Introduction

Dans le cadre d'une étude de composés mixtes entre l'argent et d'autres ions monovalents (alcalins, NH_4^+ , Tl^+), nous avons caractérisé des phases et composés nouveaux faisant intervenir les anions chromate CrO_4^{2-} et bichromate $Cr_2O_7^{2-}$ (1). Les chromates mixtes AgKCrO₄, AgNH₄CrO₄, AgRbCrO₄, et AgCsCrO₄ d'une part et les bichromates mixtes AgKCr₂O₇, AgNH₄Cr₂ O₇, et AgTlCr₂O₇ d'autre part, ont été synthétisés et plusieurs diagrammes binaires entre ces chromates et bichromates d'ions monovalents ont été établis.

Le composé AgKCr₂O₇ qui fait l'objet de la présente étude a été obtenu par fusion et recristallisation de mélanges équimolaires des bichromates d'argent et de potassium. Le diagramme d'équilibre Ag₂Cr₂O₇-K₂ Cr₂O₇ a été déterminé par analyse thermique différentielle. Le dispositif expérimental utilisé comprend un four à résistance de Kanthal, une tête de mesure constituée d'un bloc d'alumine fritté comportant des logements pour les creusets de platine avec doigts de gant (ϕ 5 mm, hauteur 1 cm). L'enregistrement des températures T et des différences de température ΔT est effectué sur un enregistreur potentiométrique MECI double piste.

Le système binaire établi est représenté figure 1. Le composé mixte AgKCr₂O₇ présente une fusion congruente à 325°C. L'étude calorimétrique des deux invariants eutectiques à 292 et 310°C montre l'absence de solutions solides latérales et permet d'envisager une composition stoechiométrique pour le sel mixte, contrairement à la phase mise en évidence entre les chromates de potassium et d'argent qui présente un large domaine d'existence (1). Des monocristaux du composé AgKCr₂O₇ ont été obtenus par refroidissement lent (3°/hr) du mélange équimolaire porté à 350°C. Ils se présentent sous forme de parallélépipèdes de 0,08 à 0,1 mm d'épaisseur sur 0,1 à 0,5 mm de coté. Ils sont de couleur orangée et

FIG. 1. Système Ag₂Cr₂O₇-K₂Cr₂O₇.

insolubles dans l'eau comme le bichromate d'argent.

Etude Cristallographique

L'étude préliminaire effectuée au moyen de clichés de cristal tournant et de Weissenberg indique une symétrie orthorhombique. Les lois d'extinction h0l, $l \neq 2n$, et 0kl, $k + l \neq 2n$, sont compatibles avec les groupes spatiaux $Pna2_1$ et Pnam. Le diagramme de poudre indexé a été déposé au J.C.P.D.S.

Les mesures d'intensité ont été faites sur

un diffractomètre automatique quatre cercles Philips PW 1100, à monochromateur de graphite, en utilisant la radiation MoK α (0,7107 Å). Les réflexions ont été enregistrées dans un intervalle $2^{\circ} < \theta < 30^{\circ}$ en balayage $\omega/2 \theta$ à la vitesse de 0,01°/sec sur des domaines de largeur (1 + 0,2 tg θ)°. Le fond continu a été mesuré de part et d'autre de chaque tache et l'enregistrement de 3 taches de référence, toutes les 2 hr, a permis de vérifier que le cristal ne s'altérait pas. Les données cristallographiques sont les suivantes:

$$a = 15,175 (7) \text{ Å} \qquad Z = 4$$

$$b = 7,414 (4) \text{ Å} \qquad D_c = 3,56 \text{ g} \cdot \text{cm}^{-3}$$

$$c = 6,014 (2) \text{ Å}$$

$$D_m = 3,50 \pm 0,05 \text{ g} \cdot \text{cm}^{-3}$$

Dimensions du cristal: $0.1 \times 0.09 \times 0.08$ mm.

Nombre de réflexions mesurées: 1200. Nombre de réflexions utilisées: 934. Critère d'exclusion $I < 3\sigma(I)$. Coefficient linéaire d'absorption $\mu = 66,6$ cm⁻¹.

Les intensités ont été corrigées des facteurs de Lorentz et de polarisation, mais étant donné les faibles dimensions du cristal, aucune correction d'absorption n'a été effectuée. Nous pouvons envisager soit le groupe $Pna2_1$ avec tous les atomes en position générale, soit le groupe Pnam avec

TABLEAU I

Paramètres atomiques, facteurs d'agitation thermique anisotrope ($\times 10^{5}$) et B équivalents

Atomes	X	Y	Ζ	β_{11}	β ₂₂	β ₃₃	β ₁₂	β ₁₃	β23	$B_{\rm eq}$ (Å ²)
Ag (4c)	0,54928 (5)	0,15475 (2)	0,25000	246 (4)	2017 (21)	1770 (27)	79 (9)	0	0	3 09 (4)
K (4c)	0,29083 (14)	0,1435 (3)	0,25000	153 (9)	989 (43)	2396 (83)	4 (18)	0	Ő	2 35 (9)
Cr ₁ (4c)	0,64697 (9)	0,3265 (2)	0,75000	145 (6)	733 (30)	1504 (51)	85 (12)	Ő	õ	1 71 (6)
Cr ₂ (4c)	0,44137 (9)	0,3075 (2)	0,75000	116 (6)	905 (32)	1835 (54)	7 (12)	0	Ő	1 90 (7)
$O_1(4c)$	0,54084 (40)	0,4306 (9)	0,75000	178 (30)	828 (127)	2361 (149)	~55 (59)	0	õ	2 29 (29)
$O_2(8d)$	0,43938 (28)	0,1818 (7)	0,5282 (9)	238 (22)	1883 (126)	2230 (187)	-148 (46)	48 (53)	-1005 (136)	3 19 (20)
O3 (8d)	0,72225 (46)	0,4762 (10)	0,75000	236 (35)	1374 (172)	3847 (355)	-266 (65)	0	0	3 59 (40)
O4 (8d)	0,36146 (46)	0,4505 (12)	0,75000	203 (35)	2018 (209)	4482 (400)	378 (72)	õ	Ő	4 26 (45)
O5 (8d)	0,65462 (29)	0,2000 (7)	0,5304 (9)	256 (22)	1434 (116)	2316 (201)	31 (41)	40 (55)	-499 (134)	2,95 (25)

Note. L'expression du facteur de température est exp $(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{21}kl)$. Les écarts types sont donnés entre parenthèses.

FIG. 2. Contenu de la maille cristalline de AgKCr₂O₇.

Ag⁺ et K⁺ en position spéciale et $Cr_2O_7^{2-}$ admettant comme élément de symétrie un élément du groupe, en l'occurence un plan miroir.

Détermination de la Structure

L'interprétation de la fonction de Patterson dans le groupe *Pnam* a permis de placer l'argent et un atome de chrome en position 4c, une série de Fourier a fait apparaître tous les autres atomes en position 4c, sauf 2 atomes d'oxygène qui se trouvent en position générale. Les affinements portant sur 934 réflexions affectées d'un facteur de pondération $w = 1/\sigma^2$ (F) ont conduit à un facteur R de 0,13 en attribuant à tous les atomes un facteur d'agitation thermique isotrope. Avec un facteur d'agitation thermique anisotrope R se fixe à la valeur 0,073 ($R_w = 0,052$).¹

Les facteurs de diffusion sont ceux des Tables Internationales (2) corrigés de la diffusion anomale. Les tests d'affinements effectués das le groupe $Pna2_1$ se sont avérés négatifs (convergence très lente de certains atomes et écarts types anormalement élevés sur certaines coordonnées) ce qui confirme la distribution centro-symétrique des facteurs de structure normalisés.

Des sections de série différence, espa-

cées de 0,2 Å ne révèlent que des résidus de densité électronique inférieurs à 0,6 $e \cdot Å^{-3}$ au voisinage des atomes lourds. Le tableau I donne les paramètres atomiques et les facteurs d'agitation thermique anisotrope ainsi que les écarts types.

Description de la Structure

La figure 2 représente une vue en perspective de la maille. L'ion $Cr_2O_7^{2-}$ admet un plan miroir perpendiculaire à O_z , mais présente en outre une pseudo-symétrie C_{2v} , (pseudo-plan miroir perpendiculaire à O_x). L'angle de torsion maximum, qui donne l'écart avec la configuration éclipsée n'est que de 0,7°. Le tableau II regroupe les angles et distances interatomiques dans l'ion bichromate, ils sont très voisins de ceux que l'on peut observer dans Ag₂Cr₂O₇ (3) et dans $K_2Cr_2O_7(4)$, mais dans ces deux composés de symétrie triclinique $Cr_2O_7^{2-}$ ne présente pas de symétrie C_s , mais toujours la pseudo-symétrie C_{2v} . L'ion Ag⁺ est situé au centre d'un plan carré légèrement déformé, constitué de quatre atomes d'oxygène situés à une distance moyenne de 2,36 Å de l'argent. Celui-ci est légèrement au-dessus de ce plan (0,27 Å). Le calcul de la force de liaison argent-oxygène effectué suivant le concept de Pauling (5) et la formule de Brown et Kun Wu (6) montre que les autres atomes d'oxygène les plus proches sont quatre fois plus faiblement liés (tableau III).

¹ La liste des facteurs de structure observés et calculés peut être obtenue auprès des auteurs.

	Distar	ces (Å)	
Cr(1)-Cr(2) -O(1)	3,123 (5) 1,786 (6)	O(1)-O(2) -O(2)(VI.6)	2,748 (7)
-O(5)	1,624 (5)	O(4) O(5)	2,726 (9)
-O(3)	1,593 (7)	-O(5)(VI,6)	2,766 (7)
Cr(2) - O(1) -O(2) }	1,764 (6)	-O(3) O(2)-O(2)(VI,6)	2,774 (9) 2,667 (10)
-O(2)(VI,6) -O(4)	1,611 (8)	$-O(4) \\ O(4)-O(2)(VI,6)$	2,673 (9)
		O(5)-O(5)(VI,6)	2,641 (10)
		-O(3) O(3)-O(5)(VI,6)	2,644 (8)
	Angles	(degré)	
O(1)-Cr(1)-O(5) O(1)-Cr(1)-O(5)(VI,6)	108,3 (2)	O(1)-Cr(2)-O(2) O(1)-Cr(2)-O(2)(VI,6)	108,2 (2)
O(1)-Cr(1)-O(3)	110,2 (3)	O(1)-Cr(2)-O(4)	107,7 (4)
$\begin{array}{c} O(3)-Cr(1)-O(5) \\ O(3)-Cr(1)-O(5)(VI,6) \end{array}$	110,6 (2)	$\begin{array}{c} O(4) - Cr(2) - O(2) \\ O(4) - Cr(2) - O(2)(VI,6) \end{array}$	111,3 (2)
O(5)-Cr(1)-O(5)(VI,6)	108,8 (4)	O(2)-Cr(2)-O(2)(VI,6)	110,1 (4)
Cr(1) - O(1) - Cr(2)	123,2 (4)		
(0) x, y, z (I) $\frac{1}{2} + x, \frac{1}{2} - (IV) \bar{x}, \bar{y}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{y}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{y}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{y}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{y}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{y}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{y}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{y}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{y}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{y}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{y}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{y}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{y}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{y}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{y}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{y}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{y}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{x}, \bar{z}$ (V) $\frac{1}{2} - x, \frac{1}{2} + (IV) \bar{z}$ (V)	Code des opéra - y, z (II) $\bar{x}, \bar{y}, \frac{1}{2}$ - y, \bar{z} (VI) x, y, $\frac{1}{2}$ Code des	tions de symétrie + z (III) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} + z$ - z (VII) $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} - z$ translations	

TABLEAU II

(0) position initiale (1) $\overline{100}$ (2) $0\overline{10}$ (3) $00\overline{1}$ (4) 100(5) $0\underline{10}$ (6) 001 (7) $10\overline{1}$ (8) $11\overline{1}$ (9) $0\overline{11}$ (10) 101 (11) $\overline{101}$

Par contre le polyèdre de coordination du potassium est plus complexe, mais le calcul de la force de liaison montre qu'on peut le limiter aux huit premiers voisins (tableau

TABLEAU III

III). Le tableau IV donne l'environnement de l'argent, la figure 3, celui du potassium. Nous retrouvons donc pour le potassium

TABLEAU IV

Forces de liaison Ag–O et K–O					
Ag-O(5)	0,249	KO(2)(VI,0)	0,141		
		K~O(3)(II,8)	0,139		
Ag-O(5)(VI,0)	0,249	K-O(5)(I,1)	0,107		
Ag-O(2)	0,232	K-O(5)(VII,1)	0,107		
Ag-O(2)(VI,0)	0,232	K-O(5)(II,7)	0,085		

K-O(5)(IV,10)

K-O(3)(I,1)

K-O(3)(I,11)

0,085

0,034

0,034

0,062

0,062

0,199

0,141

Ag-O(2)(II,7)

K-O(4)(III,9)

K-O(2)

Ag-O(2)(IV,10)

Environnement des atomes d'argent, distances (en Å) et angles (en °) caractéristiques

Distances (Å)		Angles (degré)			
Ag-O(5) Ag-O(5)(VI,0) }	2,348 (5)	O(2)-Ag-O(2)(VI,0)	89,8 (2)		
Ag-O(2) Ag-O(2)(VI,0)	2,371 (5)	O(2)-Ag-O(5) O(2)(VI,0)-Ag-O(5)	87,7 (1)		
O(2)-O(2)(VI,0)	3,348 (10)	O(5)-Ag-O(5)(VI.0)	91,8 (2)		
O(2)-O(5)	3,269 (6)				
O(5)-O(5)(V1,0)	3,373 (10)				

FIG. 3. Environnement du potassium dans AgKCr₂O₇.

une coordinence élevée, comme dans $K_2Cr_2O_7$ où les ions K^+ sont entourés de sept, huit ou neuf atomes d'oxygène. Par contre pour Ag⁺ nous avons des liaisons plus coutes, à caractère plus dirigé que dans Ag₂Cr₂O₇ où chaque atome d'argent à sept voisins. Dans le composé AgKCr₂O₇ chaque atome d'argent situé dans un plan miroir perpendiculaire à O_z est lié à 4 atomes d'oxygène appartenant à 2 ions bichromate symétriques par rapport à ce plan. La cohésion tridimensionnelle de la structure est assurée par l'intermédiaire des

atomes de potassium qui sont liés à 5 groupes bichromate différents.

Références

- 1. G. PAPIN, S. MNASSER ET C. ALQUIER, Rev. Chim. Minér., à paraître (1985).
- 2. Int. Tables X-Ray Crystallog. 4, 149 (1973).
- 3. R. GROENBACK HAZELL, Acta Crystallogr. A 25, S3, 116 (1969).
- J. K. BRANDO AND I. D. BROWN, Canad. J. Chem. 46, 933 (1968).
- L. PAULING, "The Nature of the Chemical Bond," Cornell Univ. Press, Ithaca, N.Y. (1960).
- I. D. BROWN AND K. KUN WU, Acta Crystallogr. B 32, 1957 (1976).